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𝑅𝐾 − 𝑂𝑝𝑡 is a software package for designing numerical ODE solvers with coefficients optimally chosen to pro-
vide desired properties. It is available from https://github.com/ketch/RK-Opt, with documentation at http://rk-opt.
readthedocs.io/en/latest/. The primary focus of the package is on the design of Runge-Kutta methods (including both
stability polynomials and full Butcher tableaus), but some routines for designing other classes of methods such as
multistep Runge-Kutta and general linear methods are also included. Supported objective functions include the prin-
cipal error norm and the SSP coefficient. Supported constraints include stability polynomial coefficients, low-storage
formulations, and structural constraints (explicit, diagonally implicit, etc.) RK-Opt uses CVX as well as MATLAB’s
Optimization Toolbox and Global Optimization Toolbox.

The RK-Opt package consists of the following packages:

• RK-coeff-opt: Find optimal Runge-Kutta method coefficients for a prescribed order of accuracy and num-
ber of stages. The objective function can be chosen as either the SSP coefficient or the leading
truncation error coefficient. The method may be constrained to have a low-storage implementa-
tion and/or a prescribed stability polynomial. Implicit and diagonally implicit methods can also be
optimized.

• am_radius-opt: Find stability functions with optimal radius of absolute monotonicity. This includes codes
for optimizing stability functions of multistep, multistage methods and even methods with downwind-
ing. The optimization of rational functions is experimental.

• polyopt: Given a spectrum (typically corresponding to a spatial semi-discretization of a PDE), find an
optimal stability polynomial in terms of its coefficients. These polynomial coefficients can then be
used as input to RK-coeff-opt to find a corresponding Runge-Kutta method.

• RKtools: Some general utilities for analyzing Runge-Kutta methods.

RK-Opt has been developed by David Ketcheson (primary developer and maintainer), Matteo Parsani, Aron Ahmadia,
Zack Grant, and Hendrik Ranocha.

RK-Opt is released under a modified BSD License. If you use RK-Opt in published work, please cite it; see Citing
RK-Opt.
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CHAPTER

ONE

RK-OPT

1.1 Automated design of Runge-Kutta methods

An 𝑠-stage Runge-Kutta method has roughly 𝑠2 coefficients (roughly 𝑠2/2 for explicit methods), which can be chosen
so as to provide high accuracy, stability, or other properties. Historically, most interest in Runge-Kutta methods
has focused on methods using the minimum number of stages for a given order of accuracy. However, in the past
few decades there has been increasing recognition that using extra stages can be worthwhile in order to improve other
method properties. Some areas where this is particularly useful are in the enhancement of linear and nonlinear stability
properties, the reduction of storage requirements, and the design of embedded pairs. Methods with dozens or even
hundreds of stages are not unheard of.

At the same time, most existing Runge-Kutta methods have been designed by hand, by researchers laboriously solving
the order conditions. When using extra stages, the number of available parameters makes the selection of a near-
optimal choice by hand impossible, and one resorts to computational optimization. This leads to a different paradigm
of numerical method design, in which we use sophisticated numerical (optimization) algorithms to design sophisticated
numerical (integration) algorithms. It can be expected that this trend will accelerate in the future, and perhaps one day
simple manually-constructed algorithms will be the exception.

RK-Opt contains a set of tools for designing Runge-Kutta methods in this paradigm. It has been constructed mostly in
the direct line of our research, but we have made some effort to help others easily understand and use it. We hope that
you find it useful, and that you will contribute any enhancements you may develop back to the project by sending us a
pull request on GitHub.

1.2 Installation

This section describes how to obtain RK-Opt and test that it is working correctly.

1.2.1 Dependencies

• MATLAB (relatively recent versions; tested with R2018a and later)

• MATLAB Optimization Toolbox

• MATLAB Global Optimization Toolbox

• CVX (http://cvxr.com/cvx/)

3
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1.2.2 Obtaining RK-Opt

• Download: https://github.com/ketch/RK-Opt/

• Or clone:

$ git clone https://github.com/ketch/RK-Opt.git

After unzipping/cloning, add the subdirectory RK-Opt/RKtools to your MATLAB path (see https://www.
mathworks.com/help/matlab/ref/addpath.html).

1.3 Testing your installation

You can test your RK-Opt installation by running the MATLAB script test.m.

1.3.1 Running the tests

To run the tests, do the following in MATLAB:

>> cd /path/to/RK-Opt/
>> test

If everything is set up correctly, this will run several tests, and inform you that the tests passed.

1.4 Citing RK-Opt

Are you using RK-Opt in research work to be published? If so, please include explicit mention of our work in your
publication. We suggest language such as this:

“To solve problem (17), we used RK-Opt, a package for the design of numerical ODE solvers [1],[2]”

with the following entry in your bibliography:

[1] RK-Opt: A package for the design of numerical ODE solvers, version X.Y.Z. David I. Ketcheson,
Matteo Parsani, Zachary J. Grant, Aron J. Ahmadia, and Hendrik Ranocha. July 2020.

with the appropriate version number inserted. It may also be appropriate to cite one of the following:

• if you use the RK-coeff-opt package to optimize SSP coefficients, please reference [2].

• If you use the RK-coeff-opt package to develop low-storage methods, please reference [3].

• If you use the RK-coeff-opt package to optimize for accuracy, and/or enforce a given stability function,
please reference [4].

• If you use the RK-coeff-opt package to develop general linear methods, please reference [7].

• If you use the polyopt package, please reference [5].

• If you use the am_rad-opt package, please reference [6].

[2] Highly Efficient Strong Stability Preserving Runge-Kutta Methods with Low-Storage Im-
plementations. David I. Ketcheson, SIAM Journal on Scientific Computing, 30(4):2113-2136 (2008)

[3] Runge–Kutta methods with minimum storage implementations. David I. Ketcheson, Journal
of Computational Physics, 229(5):1763-1773 (2010)

4 Chapter 1. RK-Opt
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[4] Optimized explicit Runge-Kutta schemes for the spectral difference method applied to wave
propagation problems. Matteo Parsani, David I. Ketcheson, and W. Deconinck, SIAM Journal on
Scientific Computing, 35(2):A957-A986 (2013)

[5] Optimal stability polynomials for numerical integration of initial value problems. David
I. Ketcheson and Aron J. Ahmadia, Communications in Applied Mathematics and Computational
Science, 7(2):247-271 (2012)

[6] Computation of optimal monotonicity preserving general linear methods. David I. Ketche-
son, Mathematics of Computation, 78(267):1497-1513 (2009)

[7] Strong Stability Preserving Two-step Runge–Kutta Methods. David I. Ketcheson, Sigal Got-
tlieb, CB Macdonald, SIAM Journal on Numerical Analysis, 2011;49(6):2618 (2011).

Also, please do let us know if you are using this software so we can add your work to our Applications section.

1.5 References

1.5. References 5
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CHAPTER

TWO

REFERENCE

This section contains a compilation of the documentation of each function, organized by subpackage.

2.1 RK-coeff-opt

This subpackage contains routines for finding optimal Runge-Kutta method coefficients, given a prescribed order of
accuracy, number of stages, and an objective function. Constraints on the stability polynomial (possibly obtained using
polyopt or am_radius-opt) can optionally be provided.

To run the tests, execute the MATLAB commands ` results_rkopt = runtests('test_rkopt.m');
table(results_rkopt) `

Contents

• RK-coeff-opt

– oc_butcher

– rk_opt

– unpack_lsrk

– check_RK_order

– unpack_msrk

– errcoeff

– linear_constraints

– set_n

– order_conditions

– oc_ksrk

– write_field(writeFid,name,value)

– oc_albrecht

– unpack_rk

– shuosher2butcher

– nonlinear_constraints

– rk_obj

7
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2.1.1 oc_butcher

function coneq=oc_butcher(A,b,c,p)

Order conditions for Runge-Kutta methods. This version is based on Butcher’s approach.

Assumes 𝑝 > 1.

2.1.2 rk_opt

function rk = rk_opt(s,p,class,objective,varargin)

Find optimal RK and multistep RK methods. The meaning of the arguments is as follows:

• 𝑠 number of stages.

• 𝑘 number of steps (1 for RK methods)

• 𝑝 order of the Runge-Kutta (RK) scheme.

• class: class of method to search. Available classes:

– ‘erk’ : Explicit Runge-Kutta methods

– ‘irk’ : Implicit Runge-Kutta methods

– ‘dirk’ : Diagonally implicit Runge-Kutta methods

– ‘sdirk’ : Singly diagonally implicit Runge-Kutta methods

– ‘2S’, etc. : Low-storage explicit methods; see Ketcheson, “Runge-Kutta methods with
minimum storage implementations”. J. Comput. Phys. 229(5):1763 - 1773, 2010)

– ‘emsrk1/2’ : Explicit multistep-Runge-Kutta methods

– ‘imsrk1/2’ : Implicit multistep-Runge-Kutta methods

– ‘dimsrk1/2’ : Diagonally implicit multistep-Runge-Kutta methods

• objective: objective function (‘ssp’ = maximize SSP coefficient; ‘acc’ = minimize leading
truncation error coefficient) Accuracy optimization is not currently supported for multistep
RK methods

• poly_coeff_ind: index of the polynomial coefficients to constrain (𝛽𝑗) for 𝑗 > 𝑝 (j denotes
the index of the stage). The default value is an empty array. Note that one should not
include any indices 𝑖 ≤ 𝑝, since those are determined by the order conditions.

• poly_coeff_val: constrained values of the polynomial coefficients (𝛽𝑗) for 𝑗 > 𝑝 (tall-tree
elementary weights). The default value is an empty array.

• startvec: vector of the initial guess (‘random’ = random approach; ‘smart’ = smart ap-
proach; alternatively, the user can provide the startvec array. By default startvec is initial-
ized with random numbers.

• solveorderconditions: if set to 1, solve the order conditions first before trying to optimize.
The default value is 0.

• np: number of processor to use. If np > 1 the MATLAB global optimization toolbox
Multistart is used. The default value is 1 (just one core).

• num_starting_points: Number of starting points for the global optimization per processor.
The default value is 10.

8 Chapter 2. Reference
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• writeToFile: whether to write to a file. If set to 1 write the RK coefficients to a file called
“ERK-p-s.txt”. The default value is 1.

• append_time: whether a timestamp should be added to the output file name

• constrain_emb_stability: a vector of complex points where the embed-
ded method should be stable. Sometimes, fmincon cannot find solutions if
emb_poly_coeff_ind,emb_poly_coeff_val are given. In these situations, there are a
few parameter combinations where it can be advantageous to ask fmincon to directly
constraint the value of the embedded stability function at a few points. In general, the
existing approach using polyopt and emb_poly_coeff_ind,emb_poly_coeff_val seems to
be better for most problems.

• algorithm: which algorithm to use in fmincon: ‘sqp’,’interior-point’, or ‘active-set’. By
default sqp is used.

• suppress_warnings: whether to suppress all warnings

Note: numerical experiments have shown that when the objective function is the mini-
mization of the leading truncation error coefficient, the interior-point algorithm performs
much better than the sqp one.

• display: level of display of fmincon solver (‘off’, ‘iter’, ‘notify’ or ‘final’). The default
value is ‘notify’.

• problem_class: class of problems for which the RK is designed (‘linear’ or ‘nonlinear’
problems). This option changes the type of order conditions check, i.e. linear or nonlinear
order conditions control. The default value is ‘nonlinear’.

Note: Only 𝑠 , 𝑝 , class and objective are required inputs. All the other arguments are
parameter name - value arguments to the input parser scheme. Therefore they can be
specified in any order.

Example:

>> rk=rk_opt(4,3,'erk','acc','num_starting_points',2,'np',1,
→˓'solveorderconditions',1)
>> rk=rk_opt(4,3,'erk','acc','num_starting_points',2,'np',1,
→˓'solveorderconditions',1,'np',feature('numcores'))

The fmincon options are set through the optimset that creates/alters optimization options structure. By default the following additional options are used:

• MaxFunEvals = 1000000

• TolCon = 1.e-13

• TolFun = 1.e-13

• TolX = 1.e-13

• MaxIter = 10000

• Diagnostics = off

• DerivativeCheck = off

• GradObj = on, if the objective is set equal to ‘ssp’

2.1. RK-coeff-opt 9
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2.1.3 unpack_lsrk

function [A,b,bhat,c,alpha,beta,gamma1,gamma2,gamma3,delta]=unpack_lsrk(X,class)

Extracts the coefficient arrays from the optimization vector.

This function also returns the low-storage coefficients.

2.1.4 check_RK_order

function p = check_RK_order(A,b,c)

Determines order of a RK method, up to sixth order.

For an s-stage method, input 𝐴 should be a 𝑠× 𝑠 matrix; 𝑏 and 𝑐 should be column vectors of length 𝑠.

2.1.5 unpack_msrk

function [A,Ahat,b,bhat,D,theta] = unpack_msrk(X,s,k,class)

Extract the coefficient arrays from the optimization vector

2.1.6 errcoeff

function D = errcoeff(A,b,c,p)

Inputs:

• 𝐴, 𝑏, 𝑐 – Butcher tableau

• 𝑝 – order of accuracy of the method

Computes the norm of the vector of truncation error coefficients for the terms of order 𝑝 + 1: (elementary weight -
1/(density of the tree)/(symmetry of the tree)

For now we just use Butcher’s approach. We could alternatively use Albrecht’s.

2.1.7 linear_constraints

function [Aeq,beq,lb,ub] = linear_constraints(s,class,objective,k)

This sets up:

• The linear constraints, corresponding to the consistency conditions
∑︀

𝑗 𝑏𝑗 = 1 and
∑︀

𝑗 𝑎𝑖𝑗 = 𝑐𝑗 .

• The upper and lower bounds on the unknowns. These are chosen somewhat arbitrarily, but usually aren’t impor-
tant as long as they’re not too restrictive.

10 Chapter 2. Reference
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2.1.8 set_n

function n=set_n(s,class)

Set total number of decision variables

2.1.9 order_conditions

function tau = order_conditions(x,class,s,p,Aeq,beq)

This is just a small wrapper, used when solveorderconditions=1.

2.1.10 oc_ksrk

function coneq= oc_ksrk(A,b,D,theta,p)

Order conditions for multistep-RK methods.

..warning:

Here we assume a certain minimum stage order,
which is necessarily true for methods with
strictly positive abscissae (b>0).
This assumption dramatically reduces the
number of order conditions that must be
considered for high-order methods.
For methods that do not satisfy b>0, this
assumption may be unnecessarily restrictive.

2.1.11 write_field(writeFid,name,value)

function write_field(writeFid,name,value)

Utility function to write a single parameter and value.

2.1.12 oc_albrecht

function coneq=oc_albrecht(A,b,c,p)

Order conditions for SSP RK methods.

This version is based on Albrecht’s approach.

2.1. RK-coeff-opt 11
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2.1.13 unpack_rk

unction [A,b,c,Ahat,bhat,chat]=unpack_rk(X,s,class)

Extracts the coefficient arrays from the optimization vector.

The coefficients are stored in a single vector x as:

x=[A b' c']

A is stored row-by-row.

Low-storage methods are stored in other ways as detailed inline below.

2.1.14 shuosher2butcher

function [A,b,c]=shuosher2butcher(alpha,beta);

Generate Butcher form of a Runge-Kutta method, given its Shu-Osher or modified Shu-Osher form.

For an m-stage method, 𝛼 and 𝛽 should be matrices of dimension (𝑚+ 1)×𝑚.

2.1.15 nonlinear_constraints

function [con,coneq]=nonlinear_constraints(x,class,s,p,objective,poly_coeff_ind,poly_
→˓coeff_val,k,emb_poly_coeff_ind,emb_poly_coeff_val,constrain_emb_stability)

Impose nonlinear constraints:

• if objective = ‘ssp’ : both order conditions and absolute monotonicity conditions

• if objective = ‘acc’ : order conditions

The input arguments are:

• 𝑥: vector of the decision variables. See unpack_rk.m for details about the order in which they are stored.

• class: class of method to search (‘erk’ = explicit RK; ‘irk’ = implicit RK; ‘dirk’ = diagonally implicit RK;
‘sdirk’ = singly diagonally implicit RK; ‘2S’, ‘3S’, ‘2S*’, ‘3S*’ = low-storage formulations).

• 𝑠:number of stages.

• 𝑝: order of the RK scheme.

• objective: objective function (‘ssp’ = maximize SSP coefficient; ‘acc’ = minimize leading truncation error
coefficient).

• poly_coeff_ind: index of the polynomial coefficients (𝛽𝑗) for 𝑗 > 𝑝.

• poly_coeff_val: values of the polynomial coefficients (𝛽𝑗) for 𝑗 > 𝑝 (tall-tree elementary weights).

• 𝑘: Number of steps for multi-step, mlti-stage schemes.

• emb_poly_coeff_ind: index of the polynomial coefficients of the embedded scheme (𝛽𝑗) for 𝑗 > 𝑝.

• emb_poly_coeff_val: values of the polynomial coefficients of the embedded scheme (𝛽𝑗) for 𝑗 > 𝑝 (tall-
tree elementary weights).

The outputs are:

12 Chapter 2. Reference
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• con: inequality constraints, i.e. absolute monotonicity conditions if objective = ‘ssp’ or nothing if objective
= ‘acc’

• coneq: order conditions plus stability function coefficients constraints (tall-tree elementary weights)

Two forms of the order conditions are implemented: one based on Butcher’s approach, and one based on Albrecht’s
approach. One or the other may lead to a more tractable optimization problem in some cases, but this has not been
explored carefully. The Albrecht order conditions are implemented up to order 9, assuming a certain stage order,
while the Butcher order conditions are implemented up to order 9 but do not assume anything about the stage order.
Albrecht’s approach is used by default.

2.1.16 rk_obj

function [r,g]=rk_obj(x,class,s,p,objective)

Objective function for RK optimization.

The meaning of the input arguments is as follows:

• 𝑥: vector of the unknowns.

• class: class of method to search (‘erk’ = explicit RK; ‘irk’ = implicit RK; ‘dirk’ = diagonally implicit RK;
‘sdirk’ = singly diagonally implicit RK; ‘2S’, ‘3S’, ‘2S*’, ‘3S*’ = low-storage formulations).

• 𝑠:number of stages.

• 𝑝: order of the RK scheme.

• objective: objective function (‘ssp’ = maximize SSP coefficient; ‘acc’ = minimize leading truncation error
coefficient).

The meaning of the output arguments is as follows:

• r: it is a scalar containing the radius of absolute monotonicity if objective = ‘ssp’ or the value of the leading
truncation error coefficient if objective = ‘acc’.

• g: a vector containing the gradient of the objective function respect to the unknowns. It is an array with
all zero elements except for the last component which is equal to one if objective = ‘ssp’ or it is an empty
array if objective = ‘acc’.

2.2 am_radius-opt

Find stability functions with optimal radius of absolute monotonicity. This includes codes for optimizing stability
functions of multistep, multistage methods and even methods with downwinding.

Generally, the optimization problem is phrased as a sequence of linear programming feasibility problems. For details,
see [Ket09].

The optimization of rational functions is experimental.

Contents

• am_radius-opt

– multi_R_opt

– Rkp

2.2. am_radius-opt 13
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– radimpfast

– Rskp

– Rkp_dw

– Rkp_imp

– Rkp_imp_dw

2.2.1 multi_R_opt

function multi_R = multi_R_opt(k,p,class,varargin)

This function is a script to run the routines Rskp, Rkp_dw, Rkp_imp, or Rkp_imp_dw several times with different
inputs, in order to construct tables of optimal values like those that appear in [Ket09].

The inputs k, p, and (optionally) s should be vectors containing the numbers of steps, orders of accuracy, and numbers
of stages to be considered, respectively. The output includes results for all combinations of values from the input
vectors.

The family of methods to be considered is specified in the string ‘class’. Valid values are:

• ‘skp’: find optimal general linear methods (multistep, multistage). In this case the vector s must be in-
cluded in the inputs.

• ‘kp_imp’: find optimal implicit linear multistep methods.

• ‘kp_dw’: find optimal explicit downwind linear multistep methods.

• ‘kp_imp_dw’: find optimal implicit downwind linear multistep methods.

2.2.2 Rkp

function [R,alpha,beta]=Rkp(k,p)

Find the optimal SSP k-step explicit LMM with order of accuracy p.

Inputs:

• k = # of steps

• p = order of accuracy

Outputs:

• R = the SSP coefficient

• alpha, beta = the coefficients of the method

Requires MATLAB’s optimization toolbox for the LP solver.

14 Chapter 2. Reference
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2.2.3 radimpfast

function rad=radimpfast(p,q)

Compute the radius of absolute monotonicity of the rational function whose numerator has coefficients p and denomi-
nator has coefficients q. The coefficients are ordered in ascending powers.

This function is outdated and needs to be fixed.

Uses van de Griend’s algorithm [vdGK86], assuming multiplicity one for all roots. Uses high precision arithmetic.

2.2.4 Rskp

function [R,gamma]=Rskp(s,k,p)

Finds the optimal contractive k-step, s-stage GLM with order of accuracy p for linear problems.

Inputs:

• s = # of stages

• k = # of steps

• p = order of accuracy

Outputs:

• R = threshold factor

• gamma = coefficients of the polynomials

for k=1, the resulting polynomial is
∑︀𝑚

𝑗=0(1 + 𝑧/𝑅)𝑗

For details on the general case, see [Ket09].

This routine requires MATLAB’s optimization toolbox for the LP solver.

2.2.5 Rkp_dw

function [R,alpha,beta,tbeta]=Rkp_dw(k,p)

Finds the optimal SSP k-step explicit LMM with order of accuracy p allowing downwind operators

Inputs:

• k = # of steps

• p = order of accuracy

Outputs:

• R = the SSP coefficient

• alpha, beta, tbeta = the coefficients of the method

The method is given by 𝑢𝑛 =
∑︀𝑘−1

𝑗=0 (𝛼[𝑗] + 𝛽[𝑗]𝐹 (𝑢𝑛−𝑘+𝑗) + 𝑡𝑏𝑒𝑡𝑎[𝑗]𝑡𝐹 (𝑢𝑛−𝑘+𝑗)) where tF(u) is the negated
downwind operator.

Depends on MATLAB’s optimization toolbox for the LP solver

2.2. am_radius-opt 15
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2.2.6 Rkp_imp

function [R,alpha,beta]=Rkp_imp(k,p)

Find the optimal SSP k-step implicit LMM with order of accuracy p

Inputs:

• k = # of steps

• p = order of accuracy

Outputs:

• R = the SSP coefficient

• alpha, beta = the coefficients of the method

Depends on MATLAB’s optimization toolbox for the LP solver

2.2.7 Rkp_imp_dw

function [R,alpha,beta]=Rkp_imp_dw(k,p)

Finds the optimal k-step implicit LMM with order of accuracy p allowing downwinding

Inputs:

• k = # of steps

• p = order of accuracy

Outputs:

• R = the SSP coefficient

• alpha, beta, tbeta = the coefficients of the method

Depends on MATLAB’s optimization toolbox for the LP solver

2.3 polyopt

Given a spectrum (typically corresponding to a spatial semi-discretization of a PDE), finds an optimal stability polyno-
mial. The polynomial coefficients can then be used as input to 𝑅𝐾−𝑐𝑜𝑒𝑓𝑓−𝑜𝑝𝑡 to find a corresponding Runge-Kutta
method.

This is the implementation of the algorithm described in [KA12]. The code was written by Aron Ahmadia and David
Ketcheson.

To run the tests, execute the MATLAB commands ` results_polyopt = runtests('test_polyopt.
m'); table(results_polyopt) `

Contents

• polyopt

– spectrum

– opt_poly_bisect
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2.3.1 spectrum

function lamda = spectrum(name,N,kappa,beta)

Return N discretely sampled values from certain sets in the complex plane.

Acceptable values for name:

• ‘realaxis’: [−1, 0]

• ‘imagaxis’: [−𝑖, 𝑖]

• ‘disk’: 𝑧 : |𝑧 + 1| = 1

• ‘rectangle’: 𝑥+ 𝑖𝑦 : −𝛽 ≤ 𝑦 ≤ 𝛽,−𝜅 ≤ 𝑥 ≤ 0

• ‘Niegemann-ellipse’ and ‘Niegemann-circle’: See [NDB11]

• ‘gap’: Spectrum with a gap; see [KA12]

kappa and beta are used only if name == ‘rectangle’

2.3.2 opt_poly_bisect

function [h,poly_coeff,diag_bisect] = opt_poly_bisect(lam,s,p,basis,varargin)

Finds an optimally stable polynomial of degree s and order p for the spectrum lam in the interval (h_min,h_max) to
precision eps.

Optional arguments:

solvers: A cell array of cvx solver names that should be used to solve the convex problem in the inner
loop. Defaults to {‘sdpt3’, ‘sedumi’}. You can also add ‘mosek’ and ‘gurobi’ if you have obtained
(free academic) licences for these and installed them in cvx.

lam_func: A function used to generate the appropriate spectrum at each bisection step, instead of using a
fixed (scaled) spectrum. Used for instance to find the longest rectangle of a fixed height (see Figure
10 of the CAMCoS paper).

Examples:

• To find negative real axis inclusion:

lam = spectrum('realaxis',500);
s = 10; p = 2;
[h,poly_coeff] = opt_poly_bisect(lam,s,p,'chebyshev')

• To reproduce figure 10 of [KA12]

lam_func = @(kappa) spectrum('rectangle',100,kappa,10)
[h,poly_coeff] = opt_poly_bisect(lam,20,1,'chebyshev','lam_func',lam_func)
plotstabreg_func(poly_coeff,[1])

2.3. polyopt 17
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2.4 RKtools

Some general utilities for analyzing Runge-Kutta methods.

Some of the routines expect as input a structured array 𝑟𝑘. This structure must have the fields 𝐴, 𝑏, 𝑐, containing its
Butcher coefficients. Optionally, it may represent an additive Runge-Kutta method or an embedded pair in which case
it should also have 𝐴ℎ𝑎𝑡, 𝑏ℎ𝑎𝑡, 𝑐ℎ𝑎𝑡 containing the coefficients of the secondary method.

Contents

• RKtools

– internal_stab_explicit_butcher

– plotstabreg_func

– plotstabreg

– optimal_shuosher_form

– L2_timestep_poly

– semispectrum

– rk_stabfun

– am_radius

2.4.1 internal_stab_explicit_butcher

function [stability] = internal_stab_explicit_butcher(A,b,c,spectrum,one_step_dt,p)

This function computes and plots both intermediate and one-step internal stability vector of an explicit Runge-Kutta
scheme given its Butcher tableau.

Note that for an explicit Runge-Kutta scheme the stability functions are polynomials in the complex variable z.

Construct the intermediate stability functions psi_j (where j is the index of the stage).

Note that for an explicit scheme the intermediate stability polynomial associated to the first stage is always 1, i.e.
psi_1 = 1. Therefore we just compute and plot the remaining (s-1) intermediate stability polynomials plus the one-step
stability polynomial of the Runge-Kuatta method.

2.4.2 plotstabreg_func

function [contour_matrix] = plotstabreg_func(p,q,bounds,ls,lw)

plot the absolute stability region of a one-step method, given the stability function

Inputs:

• p: coefficients of the numerator of the stability function

• q: coefficients of the denominator of the stability function

if q is omitted, it is assumed that the function is a polynomial

Remaining inputs are optional:
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• bounds: bounds for region to compute and plot (default [-9 1 -5 5])

• ls: line style (default ‘-r’)

• lw: line width (default 2)

2.4.3 plotstabreg

function [contour_matrix] = plotstabreg(rk,plotbounds,ls,lw)

Plots the absolute stability region of a Runge-Kutta method, given the Butcher array

2.4.4 optimal_shuosher_form

function [v,alpha,beta] = optimal_shuosher_form(A,b,c)

2.4.5 L2_timestep_poly

function c = L2_timestep_poly(sdisc,p,q,eps,tol)

Find the absolutely timestep for a given combination of linear spatial discretization and stability function.

Also (optionally) plots the region of absolute stability and the eigenvalues.

The timestep is determined to within accuracy eps (default 10^-4).

The spectral stability condition is checked to within tol (default 10^-13).

2.4.6 semispectrum

function L = semispectrum(method,order,doplot,nx,cfl)

Plot spectra of various semi-discretizations of the advection equation

Current choices for method:

• ‘fourier’: Fourier spectral method

• ‘chebyshev’: Chebyshev spectral method

• ‘updiff’: Upwind difference operators (linearized WENO)

• ‘DG’: Discontinuous Galerkin method

The value of order matters only for the ‘updiff’ and ‘DG’ methods and selects the order of accuracy in those cases.

2.4. RKtools 19
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2.4.7 rk_stabfun

function [p,q] = rk_stabfun(rk)

Outputs the stability function of a RK method. The Butcher coefficients should be stored in rk.A, rk.b.

p contains the coefficients of the numerator

q contains the coefficients of the denominator

𝜑(𝑧) =

∑︀
𝑗 𝑝𝑗𝑧

𝑗∑︀
𝑗 𝑞𝑗𝑧

𝑗
=

det(𝐼 − 𝑧(𝐴+ 𝑒𝑏𝑇 ))

det(𝐼 − 𝑧𝐴)
.

2.4.8 am_radius

function r = am_radius(A,b,c,eps,rmax)

Evaluates the Radius of absolute monotonicity of a Runge-Kutta method, given the Butcher array.

For an 𝑚-stage method, 𝐴 should be an 𝑚×𝑚 matrix and 𝑏 and 𝑐 should be column vectors of length m.

Accuracy can be changed by modifying the value of eps (default 10−10) Methods with very large radii of a.m. (>50)
will require the default value of rmax to be increased.

The radius of absolute monotonicity is the largest value of 𝑟 such that

\begin{align*} K(I+rA)^{-1} \ge & 0 \\ rK(I+rA)^{-1}e_m \le & e_{m+1} \end{align*}

where $$ K = \left(\begin{array}{c} A \\ b^T \end{array}\right) $$
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CHAPTER

THREE

CONTRIBUTING

If you wish to contribute, we recommend that you fork the RK-Opt GitHub repository, implement your additions, and
issue a pull request. You may also simply e-mail a patch to us.
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